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TURBULENT FLOW IN A DUCT WITH 
CUSPED CORNERS 

C.  W. RAPLEY 

Department of Mechunical Engineering, Sunderland Polytechnic, Sunderland, England 

SUMMARY 

An orthogonal-cuvilinear-mesh-based finite volume calculation method has been applied to the problem of 
fully developed turbulent flow in the tri-cusped cornered duct formed when parallel circular rods touch in 
triangular array. Algebraic stress relations combined with the k--E turbulence model are used for calculation of 
the required stresses. A single circulation of turbulence-driven cross-plane secondary flow from the core into 
the duct corner has been predicted in a one-sixth symmetry region of the duct and the convective transport 
effects of this flow are seen to have much influence on local mean flow distributions. The turbulence field 
predicted by the k--E model showed significant damping in the cusped corner region where turbulent 
viscosities approached the laminar value. Satisfactory agreement was obtained with the limited local and 
overall mean flow measurements available. 
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INTRODUCTION 

The need for compact flow passages in heat exchangers and other flow systems often leads to the 
consideration of ducts with small internal angles or with walls that meet tangentially to form 
cusped corners. Examples can be found in the ‘sine-duct’ and other passages formed from alternate 
layers of corrugated and flat material (Figure l(a)), between rods in rod or tube bundles 
(Figure l(b)) and also between the shell and tubes (Figure l(c)) or in moon-shaped ducts 
(Figure l(d)). The rapid change in flow cross-section of these ducts will give rise to relatively large 
variations in axial velocity across the flow and in wall shear stress and heat flux around the 
periphery which will feature markedly in design considerations. The restricted access in this type 
of passage causes obvious measurement difficulties and will account for the paucity of turbulent 
local mean flow and heat transfer experimental data currently available (see for example 
Reference 1). 

For these reasons the availability of a reliable turbulent flow prediction procedure, to 
supplement and extend experiment, would be a decided advantage. However, the development of 
such a method is hampered by the difficult geometry of the ducts and the significant influence of 
secondary flows which makes the calculation of a three dimensional velocity field usually necessary 
for fully developed flow. Simplified approaches, allowing indirectly for secondary flow effects, 
cannot usually simulate the full influences on local mean flow.2 

The presence of turbulence driven secondary flows in the passage cross-plane of straight non- 
circular passages has been known since the early experiments of Nikuradse3 in triangular and 
other shaped ducts, where the measured axial velocity contours showed distortions that were 
attributed to secondary flows. These distortions were a general bulging of axial velocity contours 
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( C )  ( d )  
Figure 1. Examples of ducts with cusped corners 

into duct corners, a feature which has now become a characteristic effect of secondary motions on 
the mean flow in non-circular passages. Since Nikuradse's work actual measurements of secondary 
velocities, usually found to be of the order of 1-2 per cent of mean axial velocity, have been reported 
for square and rectangular an equilateral triangular duct7 and a rod bundle passage.' 
The general pattern of secondary flow circulation found was from the core into duct corners along 
the region around the corner bisectors, returning to the core via the wall region and planes normal 
to the wall. This convective transport of higher velocity core fluid towards the duct corners accounts 
for the observed bulging of axial velocity contours in that direction. Indeed, turbulent flow 
calculations which included secondary flow in these p a ~ s a g e s , ~ , ~ ~ ' ~  indicate that the secondary 
motions have a marked effect generally on local mean flow distributions. 

The above calculations have been mainly test cases presented as part of the validation 
procedures for the methods developed and thus have relatively uncomplicated non-circular 
passage geometries. This is confirmed by the overall axial pressure-drop or friction factors which 
were generally similar to circular pipe values when the equivalent (hydraulic) diameter was used. 
There do not appear to be any comparable theoretical studies of ducts which are very non-circular, 
such as those with cusped or very narrow internal corners, and this situation has been the main 
spur to the present work. 

The duct shown in Figure l(b) is of particular interest because it represents the limiting case of 
compact rod bundle flows with rods touching in triangular array. Closely spaced rod bundles have 
important applications in nuclear reactor cores and other compact heat exchangers and, over the 
years, much effort has gone into methods of prediction.' '-16 However, no calculations of turbulent 
flow with predicted secondary flow appear to be available for rods closer than a pitch (P)/diameter 
(D) ratio of l~l.10*17*1' The duct in Figure l(b) yields a very non-circular passage shape with curved 
walls and cusped corners and is thus suitable for the present study. This should provide useful 
information on local mean flow, secondary flow and turbulence distributions and the problems 
associated with their prediction generally in this class of duct as well as specifically for the limiting 
case of rods touching in rod bundle flow. 

Experimental work on turbulent flow in this duct geometry is mainly confined to friction factor 
m e a ~ u r e m e n t s ' ~ - ~ ~  which show the axial pressure gradient to be significantly below that in 
circular ducts when the equivalent diameter is used, as may be expected with such a very non- 
circular duct. The measurements are conflicting however, ranging from 30 to 60 per cent below the 
circular duct data, as can be seen from Figure 12. The only local measurements that appear to be 
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Figure 2. Geometric duct symmetries 

available are the axial velocity and wall shear stress d i s ~ ~ b u t ~ o n s  reported by tevchenko et ut.19 
These measurements, which form the main basis of comparison with the present predictions, did 
not include secondary fl ow measurement but yielded axial velocity contours which bulge markedly 
into the duct corners (see Figure 71, thus implying convective transport by secondary flow from the 
core towards the corners. These effects, including the implied secondary flow circulations, will be 
discussed in more detail later. 

In the present study, a numerical finite volume procedure, developed for the prediction of fully 
developed turbulent flow in straight passages of arbitrary constant c r o s s - s e c t i ~ n , ' ~ ~ ~ ~  is applied to 
a symmetry sextant of the duct, as shown in Figure 2. The method solves the Reynolds, continuity 
and turbulence transport equations on an orthogonal curvilinear mesh which is generated 
numerically to fit the duct cross-section. 

THE GOVERNING EQUATIONS 

The Reynolds equation for steady t i~~-averaged incompress~ble turbulent tlow can be written in 
Cartesian tensor form as 

a ( ~ ~ ~ j u j ~ / a x i  = - ap/axj i- a(rijyaxi (1) 

a(pui)/axj = 0 (2 

(3) 

and the continuity equation as 

The stress tensor T i j  represents the sum of the viscous and turbulent (Reynolds) stresses, i.e. 
~ 

rij = p(dui/axj i- duj/dxi) - p u : ~ ;  

When cast into general orthogonal co-ordinate form with, for example, the aid of the 
transformation relations of Pope24 and specialized to fully developed flow in straight passages, 
equations (I) and (2) can be written: 
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Direction 2 (cross-plane) 

Direction 3 (cross-plane) 

Continuity 

Here t3  is the straight axial co-ordinate and and <, are the cross-plane co-ordinates with metric 
coefficients h ,  and h, and local radii of curvature r l  and r z ,  respectively. The latter are given by 

~ __- - ___ 
The cross-plane turbulent stresses p i 2 ,  pu;’ and pu;u; contained in rl l  etc. cannot be 

calculated with an eddy viscosity model since no cross-plane velocities would be generated -this 
being a consequence of the stresses being directly related to co-planar velocity gradients, as with 
fully developed laminar flow. This means that a higher order turbulent stress model is needed, 
which usually entails solving the Reynolds stress transport equations for each stress required. This 
complex multi-equation method has been tried for square d ~ c t s ~ ’ , ’ ~  with mixed success. An 
alternative simplified approach was however taken by Launder and Ying’ who developed 
approximate algebraic versions of the Reynolds stress transport equations for the calculation of 
square duct flow. These were later generalized by Gessner and Emery27 who derived an algebraic 
equation set for the full Reynolds stress tensor. 

The starting point of this algebraic stress transport model (ASTM) was the modelled form of the 
Reynolds stress transport equations obtained by Hanjalic and Launder.28 These embodied the 
usual high Reynolds number assumption of isotropy of the small scale motions responsible for 
dissipation of the stresses and employed a pressure-strain model based on the assumption of 
approximately homogeneous turbulence. These equations were then simplified by neglecting 
transport by diffusion and convection as a first-order approximation based on experimental 
evidence of the relatively small cross-plane (secondary) velocities that occur and the dominance of 
vorticity production in the near wall r ~ g i o n . ~  This removed the partial derivatives of stress so that 
the remaining degenerate forms could be manipulated into algebraic relations. This was further 
facilitated by the consistent assumption that only axial velocity gradients were significant in 
generation terms and also by the implied local turbulence equilibrium which resulted in emergence 
of the useful relation G = pt: where G is the generation rate of k,  the turbulence kinetic energy, and c 
its dissipation rate (see equation (16) with convection and diffusion transport omitted). pt: was 
substituted for the generation G terms (as in equation (18)) whenever they appeared in the 
manipulation. The final form of the ASTM equation set for the kinetic stresses can be written in 
general orthogonal co-ordinate form as 

___ 
u;’ = Clk (9) 

~2 = C3k - C2C4(k3/s2)(au,/h,3iz)’ (10) 
__ 
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U ~ U ;  = - C4(k2/&)au3/h2dt2 (14) 
where C,, C2, C, and C, are related coefficients. The overall relation between C,, C2 and C3 can 
be seen by summing equations (9)-(11) to 2k and eliminating the velocity gradients with the 
relation G = PE. 

The axial plane shear stresses pu;uj and puiuj are seen from equations (13) and (14) to be 
represented by a gradient diffusion model with an isotropic turbulent viscosity pi given by 

.__- 

rut = C4Pk2/& (15) 
In contrast the cross-plane stresses, which are responsible for secondary flows (their gradients 
appear as sources in equations (6) and (7)), are seen from equations (10)-(12) to depend on strain 
rates in planes orthogonal to the cross-plane. 

The turbulence quantities k and E, required in the ASTM, were obtained here from the 
appropriate form of the well-known k--F two equation turbulence which, in the present 
case yield partial differential transport equations of the following form: 

a(h2puSk)/d<l f a(hSpu2k)/at2 = hSh2G - h1h2pE a(h2(pt/ok)ak/hSatl)/atl 

+ a(hS(p .Jok)ak/h ,a t2) /a t2  (16) 

+ d(h,(rutlo,)dE/h2dt2)/dt2 (17) 
a(h,Pu,E)/~tl+ a(h,Pu,E)lat, = hlh2CeSEGIk - hlh2Ce2P&2/k + a(h,(ll,lo,)aE/hlatl)Ia~~ 

where ok and O~ are the turbulent Prandtl numbers for k and E, respectively, and G is the generation 
rate of turbulence kinetic energy, calculated from 

G = - PU;UjaU3/h,a~,  - pu;ujau,/h,at, (18) 
The boundary conditions applied around the duct periphery involved the use of wall functions to 
bridge between the interior solution and wall surfaces. The functions used were conventional and 
based on the well-known 'logarithmic velocity law of the wall' which is written 

u/u* = (In Ey+)/rc (19) 

Y + = PU*Y/P (20) 

where u represents the local resultant velocity and 

with y the distance from the wall along the appropriate co-ordinate line. u* is the local friction 
velocity taken here as 

U* = ~ $ p C : ' ~ k l ' ~  (21) 
with z, the local wall shear stress. Experimental measurements have confirmed the applicability of 
the logarithmic velocity law in near wall regions in a wide range of non-circular passages.' 

The above relations were used to obtain local wall shear stress for solution of the momentum 
equations and together with the assumption of local turbulence equilibrium also used to obtain 
relations for the near-wall generation and dissipation of turbulence kinetic energy for solution of 
the turbulence equations2, 
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The values of the various constants and coefficients appearing in the foregoing equations, many 
of which are dependent, were taken as follows from previous ~ o r k . ~ , ~ , ' ~  C, = 0.013, C, = 0.56, 
C, = 0.085, C,, = 1.55, C,, = 2.0, (T, = 1.2, ak = 1.0, K = 0.42, E = 9.025. 

THE SOLUTION METHOD 

The transport equations (4), ( 5 )  and (6) for momentum and (16) and (17) for turbulence can all be 
cast into the following common form: 

(22) a(h,Pul4)lat, + a(h,Puz+)/at, = a(h,I),~+/~,at,)/at, + a(hlI),d+/hzatZ)/dt, + s, 
where 4 represents any of ul, u,, u3, k or c. Details of the appropriate exchange coefficient I), and 
source S, for each equation can be found in Table 5.3.1 of Reference 23. The turbulent stresses 
appearing in these source terms were calculated with the ASTM equations (10)-(14). 

A conventional finite volume method was used, based on an orthogonal mesh in the passage 
cross-plane (see Figure 3) and employing a staggered grid arrangement for cross-plane momen- 

Integration of each term in equation (22) across the appropriate control volumes led to 
finite volume equations of the usual form, i.e. 

(4 - Sl)& = A,+, + As+, + A,+, + A,& + S2 (23) 
where A ,  = A ,  + A ,  + A, + A, and S ,  and S ,  are coefficients of the linearized sources. The A 
coefficients contain the combined effects of convection and diffusion approximated by a standard 
hybrid differencing scheme.31 Full details of the integrations and resulting equations are given in 
Reference 23. 

The solution procedure consisted of a repeated outer sequence in which the cross-plane 
momentum and continuity equations were dealt with by the 'SIMPLE method,,' and an inner 
iteration sequence in which the finite volume equations were solved with a conventional line-by- 
line method based on the well known tri-diagonal matrix algorithm. 

Owing to the coupling and non-linearity of the equations solved, convergence of the solution 
was found to be uncertain. These difficulties were also experienced by other workers solving the full 
3D momentum equations in other passage g e ~ m e t r i e s , ~ * ' ~ , ' ~  who were eventually forced to 
simplify or to prescribe the signs of the sources in the equations containing cross-plane stresses, 
which were the main source of the instabilities. In the present method however, no simplifications 
were made or restrictions imposed as convergence of the solution was obtained through careful 
linearizing of source terms together with extensive under-relaxation, programme control and the 

$2 

Figure 3. The cross-plane orthogonal curvilinear mesh 
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use of block a d j u ~ t m e n t . ~ ~  The convergence requirement used was that the sum of the absolute 
residual sources over the whole field be less than of reference quantities based on overall mass 
and momentum flows. 

TURBULENT FLOW IN A DUCT 

PREDICTIONS 

A finite difference method was used to generate an orthogonal curvilinear mesh fitted into the 
cross-plane of a symmetry sextant of the duct. In this method, Cartesian co-ordinates x1 and x2 are 
related to the general orthogonal co-ordinates tl and g 2  by the equations3’ 

where I a, = (ax,/at1)2 + (ax2/atl)2 = h: 
a2 = (ax,/at2)2 + (ax,/at2)2 = h; 

The above were solved by finite differences using central differencing and a similar AD1 
algorithm to that used in the flow solution. Boundary conditions were calculated by imposing the 
Cauchy-Riemann conditions mid-way between the boundary and the nearest internal nodes and 
simultaneously with the boundary shape equations. This is diagrammatically illustrated in Figure 
4 with a typical full mesh generated for the present case shown in Figure 5. 

Numerical accuracy of the flow solution was tested with laminar flow calculations, grid 
refinement and comparisons of solutions obtained with different mesh spacings. The laminar flow 
solutions obtained were found to be within 0.5 per cent of the previously published point matching 
solutions.33 In turbulent flow calculations, careful differencing of the source terms on the 

/ 
/-- 

- __--- I 

-L- 

J-J ---- - -- - 
Figure 4. Mesh boundary conditions 

Figure 5. Typical orthogonal mesh 
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- - - -  
Figure 6. Predicted secondary velocity vectors, Re = 95,000 

orthogonal curvilinear mesh was found necessary, particularly the terms containing cross-plane 
stresses, to avoid local effects due to mesh geometry. Extensive symmetry tests with different 
passage geometries were needed to establish differencing methods that eliminated these effects.23 
With the present passage shape, tests with different meshes were used to obtainmean flow solutions 
that were substantially independent of the mesh. As may be expected, the secondary flow field was 
found to be more sensitive to mesh changes than mean flow particularly in the regions where nodes 
became sparse. Of particular interest was the calculated mean flow and turbulence fields in the 
cusped corner region where the near wall node was close to the viscous sublayer and thus could not 
be considered in the fully turbulent region as assumed in the modelling of the turbulence equations 
and in the logarithmic velocity law based wall functions. However, as will be shown, the k--E model 
yielded low values of turbulent viscosity in this region and whether the logarithmic law or a simple 
laminar flow relation was used in the near wall region, negligible changes occurred in the solution. 
Thus no special modifications of the turbulence model were found necessary to cope with this 
region. Check calculations were made using a range of meshes in the corner region and only 
negligible changes occurred in the main flow solution. It appears that this relatively stagnant 
region has only a minor influence on the main flow. In the solutions presented, the minimum y +  
value at which the logarithmic velocity law was applied was 6.6, this being in the cusped corner 
region where the flow was close to laminar. 

A single circulation of secondary flow was predicted in a symmetry sextant, as seen in the plot of 
calculated secondary velocity vectors in Figure 6. Flow is from the core into the corner, 
recirculating to the core via the wall and wall normal with maximum velocities of 1.5 per cent of the 
mean axial velocity occurring along the corner bisector and near the wall. Although no 
measurements are available for this geometry, the pattern is similar to that measured by Tahir and 
Rogers' in a triangular array rod bundle with P/D = 1.06 and is consistent generally with observed 

, 

Experiment (191 
u3 \ K M A X  

Predicted, this work 

Calculated this work, 
no secondary f low 

Figure 7. Axial velocity contours, Re = 42,600 
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EXPERIMENT [191: 

Figure 8. Axial velocity profiles, Re = 42,600 

secondary flow patterns as previously mentioned. The predicted secondary flow pattern of 
Figure 6 can thus be considered plausible. 

The effect of this circulation on the axial velocity contours can be seen in Figure 7 which 
compares predictions with experiment and with calculations with secondary flow suppressed. The 
predictions are seen to be in good agreement with experiment and show markedly the 
characteristic bulging of the contours into the duct corners due to the convective transport of core 
fluid in that direction by secondary motions. An opposite effect can be seen in the wall region 
towards 6 = 30" where the contours bend away from the wall due to secondary flow convection 
transport of near wall fluid away from the wall in that region. Both of these effects appear to be well 
predicted. 8 is defined in Figure 9. 

More detail of the axial velocity field is given in Figure 8 which compares profiles plotted along 
the main symmetry planes and confirms the satisfactory agreement between predictions and 
measurements. This level of agreement is continued in the wall shear stress profiles displayed in 
Figure 9. The effect of secondary flow in reducing the peripheral variation is evident with reduced 

X EXPERIMENT I 1 9 1  

PREDICTED, T H I S  WORK ,A t 2.0 - 

Figure 9. Wall shear stress, Re = 95,000 
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Figure 10. Turbulence profiles along corner bisecting plane, Re = 95,000 

shear stress as 0 approaches 30", owing to the peripheral coupling of the flow field provided by the 
secondary flow and also the reduced axial velocity gradients in the wall region near 0 = 30" caused 
by the previously described secondary flow convection transport in that region. This tendency of 
secondary flow to make wall shear more uniform is apparent in all previous non-circular passages 
studied 7 * 9 3 1 7 3 2 3  and can be considered a further characteristic effect of secondary flow on the mean 
flow. 

Figure 10 gives some details of the turbulence field as predicted by the ASTM and k--E turbulence 
models. Unfortunately there are no experimental measurements available for comparison with this 
geometry. The increased axial velocity gradients into the corner along the corner bisecting plane 
have increased turbulence kinetic energy generation and have thus shifted the point of maximum k 
nearer to the corner, as seen in Figure 10. The levels of turbulence kinetic energy and turbulent 
viscosity are seen to decay rapidly from this point into the corner to give viscosities approaching 

1.2 

1.0 

0.8 

0.6 

0.4 

0.2 

EXPERIMENT (WD=1.123) [171: 

I error b a d  1 
- THISWORK --- no cross flw 

\ 

Figure 11. Turbulence profiles along radial symmetry plane 
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laminar in the last 20 per cent of the centre plane. This is the expected behaviour due to the 
damping effect of the walls in this cusped corner region and is consistent with the previously 
mentioned checks made with wall functions at the near wall nodes in this region where replacing 
the logarithmic velocity law by a simple laminar relation had only a negligible effect on the 
solution. 

The predicted turbulence kinetic energy and cross-plane normal stress profiles along the 0 = 30" 
symmetry radial plane are shown in Figure 11. In this Figure the laser-Doppler measurements of 
Carajilescov and Todreas17 for P/D = 1.123 are also included to give a comparison with the 
nearest geometry rod bundle experiments available. The predictions show the same core levels as 
the measurements and similar general trends in radial variations, particularly for turbulence 
kinetic energy. 

As may be expected from the features of mean flow already discussed in this region, secondary 
flow has significantly reduced the level of k in the wall region and increased it in the core-as may 
be observed from the predicted profiles. The comparison between prediction and experiment is not 
so satisfactory for the cross-plane normal stresses. The measurements show an unexpected 
anisotropy in the core which was not found by the other experiments at higher P/D ratios.34335 This 
may well be an indication of the uncertainty of such measurements. This anisotropy of the 
measured stresses near the wall, due to the damping effect of the wall on the normal component .;" 
is a little uneven but apparent and expected. However, the calculated stresses show the damping 
effect to be confined to the region close to the wall only. This underpredicted wall damping effect 
obtained when using the ASTM has been discussed before by one of the originators of the 
and is a consequence of the model coefficients, particularly C,, being selected to match 
homogeneous shear flow rather than near wall equilibrium flows. This method provides 
satisfactory prediction of secondary flows as evident in the past and present work. Full discussions 
on stress prediction with the ASTM, mainly in the context of circular and square duct flows, can be 
found e l ~ e w h e r e . , ~ . ~ ~  

Finally, the predicted friction factor characteristic is compared with the available experiments in 
Figure 12 where it is seen to be in reasonable agreement with the measurements of Eiffler and 
Nijsing,, and Levchenko et aZ.19 The Sutherland and Kays2' measurements appear to be 
significantly lower than these, a result for which there does not appear to be any explanation- 
particularly since the measured characteristics for other rod bundle P/D ratios presented by them 
on the same plot are in fair agreement with other published experiments for similar P/I) ratios. The 
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I191 -.- 

x 1221 

5x10 
Re 0 [211 I * 2x10' 3x104 

Figure 12. Friction factor characteristics 
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characteristics in Figure 12 are seen to be all well below the circular duct data, as represented by the 
Blasius equation, thus indicating that the equivalent diameter concept does not apply, since it 
would over-estimate pressure drop by more than 70 per cent in this case. This is not surprising since 
the cusped shape of the duct gives rise to significant variations in wall shear stress, as seen in Figure 
8, which makes it far removed from the circular duct case where wall shear stress is uniform. Indeed 
the very non-circular shape of this duct was the reason for its selection in this study. 

CONCLUSIONS 

The prediction method developed for fully developed flow in arbitrary shaped passages has 
been successfully applied to the difficult case of turbulent flow in the cusped cornered duct formed 
when rods touch in triangular array. A single swirl of secondary flow was predicted in a symmetry 
one-sixth of the duct and good agreement between predicted and measured local and overall mean 
flow has been obtained with the convective transport effects of secondary flow clearly evident in the 
predictions. The k--E two equation turbulence model, which was coupled with the algebraic stress 
transport model for stress calculations, appears to have performed adequately. The difficulties 
expected in the cusped corner region which should contain transition flow did not materialize in 
the solutions obtained, which yielded plausible turbulence fields. However, since the turbulence 
model used was valid only for fully turbulent flow it cannot be expected to calculate transition flow 
properly and the implication is that the relatively stagnant cusped corner region flow does not have 
a significant influence on flow in the remainder of the duct. It remains to be seen, in the further 
development of the method for heat transfer prediction, what difficulties may occur due to the 
viscous effects in this corner region when heat flux is calculated there. 
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